MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. AISI 436 Stainless Steel

N06255 nickel belongs to the nickel alloys classification, while AISI 436 stainless steel belongs to the iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
25
Fatigue Strength, MPa 210
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 460
320
Tensile Strength: Ultimate (UTS), MPa 660
500
Tensile Strength: Yield (Proof), MPa 250
270

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1000
880
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
38
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
18
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 23 to 26
16 to 18
Copper (Cu), % 0 to 1.2
0
Iron (Fe), % 6.0 to 24
77.8 to 83.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 9.0
0.75 to 1.3
Nickel (Ni), % 47 to 52
0
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0