MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. AWS BNi-4

Both N06255 nickel and AWS BNi-4 are nickel alloys. They have 51% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is AWS BNi-4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
180
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
67
Tensile Strength: Ultimate (UTS), MPa 660
430

Thermal Properties

Latent Heat of Fusion, J/g 320
340
Melting Completion (Liquidus), °C 1470
1070
Melting Onset (Solidus), °C 1420
980
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
60
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 9.4
10
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 270
220

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 23
22
Strength to Weight: Axial, points 22
14
Strength to Weight: Bending, points 20
15
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
1.5 to 2.2
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 23 to 26
0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 1.2
0
Iron (Fe), % 6.0 to 24
0 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
91.4 to 95.5
Phosphorus (P), % 0 to 0.030
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
3.0 to 4.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.69
0 to 0.050
Tungsten (W), % 0 to 3.0
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5