MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. EN AC-43000 Aluminum

N06255 nickel belongs to the nickel alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06255 nickel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
1.1 to 2.5
Fatigue Strength, MPa 210
68 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 660
180 to 270
Tensile Strength: Yield (Proof), MPa 250
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1470
600
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.4
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 150
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 22
20 to 29
Strength to Weight: Bending, points 20
28 to 36
Thermal Shock Resistance, points 17
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
0 to 0.050
Iron (Fe), % 6.0 to 24
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.45
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 0.050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.69
0 to 0.15
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15