MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. EN AC-45100 Aluminum

N06255 nickel belongs to the nickel alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06255 nickel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.0 to 2.8
Fatigue Strength, MPa 210
82 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 660
300 to 360
Tensile Strength: Yield (Proof), MPa 250
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 450
890
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.4
7.9
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 150
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
30 to 35
Strength to Weight: Bending, points 20
35 to 39
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
2.6 to 3.6
Iron (Fe), % 6.0 to 24
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.69
0 to 0.25
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15