MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. Grade 6 Titanium

N06255 nickel belongs to the nickel alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
11
Fatigue Strength, MPa 210
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
39
Shear Strength, MPa 460
530
Tensile Strength: Ultimate (UTS), MPa 660
890
Tensile Strength: Yield (Proof), MPa 250
840

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
310
Melting Completion (Liquidus), °C 1470
1580
Melting Onset (Solidus), °C 1420
1530
Specific Heat Capacity, J/kg-K 450
550
Thermal Expansion, µm/m-K 13
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 55
36
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 9.4
30
Embodied Energy, MJ/kg 130
480
Embodied Water, L/kg 270
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
92
Resilience: Unit (Modulus of Resilience), kJ/m3 150
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 22
55
Strength to Weight: Bending, points 20
46
Thermal Shock Resistance, points 17
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 6.0 to 24
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.69
89.8 to 94
Tungsten (W), % 0 to 3.0
0
Residuals, % 0
0 to 0.4