MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. SAE-AISI 1065 Steel

N06255 nickel belongs to the nickel alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
11 to 14
Fatigue Strength, MPa 210
270 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
72
Shear Strength, MPa 460
430 to 470
Tensile Strength: Ultimate (UTS), MPa 660
710 to 780
Tensile Strength: Yield (Proof), MPa 250
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 130
19
Embodied Water, L/kg 270
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 150
490 to 820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 22
25 to 28
Strength to Weight: Bending, points 20
23 to 24
Thermal Shock Resistance, points 17
25 to 27

Alloy Composition

Carbon (C), % 0 to 0.030
0.6 to 0.7
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
0
Iron (Fe), % 6.0 to 24
98.3 to 98.8
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0