MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. Titanium 4-4-2

N06255 nickel belongs to the nickel alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
10
Fatigue Strength, MPa 210
590 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
42
Shear Strength, MPa 460
690 to 750
Tensile Strength: Ultimate (UTS), MPa 660
1150 to 1250
Tensile Strength: Yield (Proof), MPa 250
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
310
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 450
540
Thermal Expansion, µm/m-K 13
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
39
Density, g/cm3 8.5
4.7
Embodied Carbon, kg CO2/kg material 9.4
30
Embodied Energy, MJ/kg 130
480
Embodied Water, L/kg 270
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
4700 to 5160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
34
Strength to Weight: Axial, points 22
68 to 74
Strength to Weight: Bending, points 20
52 to 55
Thermal Shock Resistance, points 17
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 6.0 to 24
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
3.0 to 5.0
Nickel (Ni), % 47 to 52
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.69
85.8 to 92.2
Tungsten (W), % 0 to 3.0
0
Residuals, % 0
0 to 0.4