MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C35000 Brass

N06255 nickel belongs to the nickel alloys classification, while C35000 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C35000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 660
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1470
920
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
45
Embodied Water, L/kg 270
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
12 to 22
Strength to Weight: Bending, points 20
13 to 21
Thermal Shock Resistance, points 17
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
60 to 63
Iron (Fe), % 6.0 to 24
0 to 0.1
Lead (Pb), % 0
0.8 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
34.5 to 39.2
Residuals, % 0
0 to 0.4