MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C36200 Brass

N06255 nickel belongs to the nickel alloys classification, while C36200 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
20 to 53
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
39
Shear Strength, MPa 460
210 to 240
Tensile Strength: Ultimate (UTS), MPa 660
340 to 420
Tensile Strength: Yield (Proof), MPa 250
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 130
45
Embodied Water, L/kg 270
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 150
89 to 630
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
11 to 14
Strength to Weight: Bending, points 20
13 to 15
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
60 to 63
Iron (Fe), % 6.0 to 24
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
32.4 to 36.5