MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C82500 Copper

N06255 nickel belongs to the nickel alloys classification, while C82500 copper belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 660
550 to 1100
Tensile Strength: Yield (Proof), MPa 250
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 1000
280
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 450
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 9.4
10
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 150
400 to 4000
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
18 to 35
Strength to Weight: Bending, points 20
17 to 27
Thermal Shock Resistance, points 17
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0 to 1.2
95.3 to 97.8
Iron (Fe), % 6.0 to 24
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.69
0 to 0.12
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5