MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C86200 Bronze

N06255 nickel belongs to the nickel alloys classification, while C86200 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
42
Tensile Strength: Ultimate (UTS), MPa 660
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 450
410
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 9.4
2.9
Embodied Energy, MJ/kg 130
49
Embodied Water, L/kg 270
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
22
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
60 to 66
Iron (Fe), % 6.0 to 24
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0