MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C86400 Bronze

N06255 nickel belongs to the nickel alloys classification, while C86400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 660
470
Tensile Strength: Yield (Proof), MPa 250
150

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1470
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 450
390
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.4
2.8
Embodied Energy, MJ/kg 130
48
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
63
Resilience: Unit (Modulus of Resilience), kJ/m3 150
110
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 20
17
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
56 to 62
Iron (Fe), % 6.0 to 24
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0.1 to 1.0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0