MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. C90800 Bronze

N06255 nickel belongs to the nickel alloys classification, while C90800 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 660
330
Tensile Strength: Yield (Proof), MPa 250
170

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1470
990
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 450
370
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 55
36
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.4
3.8
Embodied Energy, MJ/kg 130
62
Embodied Water, L/kg 270
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
35
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 20
12
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
85.3 to 89
Iron (Fe), % 6.0 to 24
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
11 to 13
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25