MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. S20431 Stainless Steel

N06255 nickel belongs to the nickel alloys classification, while S20431 stainless steel belongs to the iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06255 nickel and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
46
Fatigue Strength, MPa 210
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 460
500
Tensile Strength: Ultimate (UTS), MPa 660
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1000
890
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.5
Embodied Energy, MJ/kg 130
36
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
270
Resilience: Unit (Modulus of Resilience), kJ/m3 150
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
23
Thermal Shock Resistance, points 17
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 23 to 26
17 to 18
Copper (Cu), % 0 to 1.2
1.5 to 3.5
Iron (Fe), % 6.0 to 24
66.1 to 74.4
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0