MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. A413.0 Aluminum

N06455 nickel belongs to the nickel alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06455 nickel and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 47
3.5
Fatigue Strength, MPa 290
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 550
170
Tensile Strength: Ultimate (UTS), MPa 780
240
Tensile Strength: Yield (Proof), MPa 330
130

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1510
590
Melting Onset (Solidus), °C 1450
580
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.8
2.6
Embodied Carbon, kg CO2/kg material 12
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 290
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 260
120
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 21
33
Thermal Diffusivity, mm2/s 2.7
52
Thermal Shock Resistance, points 24
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 14 to 18
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 0 to 3.0
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 14 to 17
0
Nickel (Ni), % 58.1 to 72
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
11 to 13
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25