MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. EN 1.7710 Steel

N06455 nickel belongs to the nickel alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 47
6.8 to 11
Fatigue Strength, MPa 290
500 to 620
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 82
73
Tensile Strength: Ultimate (UTS), MPa 780
930 to 1070
Tensile Strength: Yield (Proof), MPa 330
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 960
440
Melting Completion (Liquidus), °C 1510
1470
Melting Onset (Solidus), °C 1450
1430
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 10
41
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 65
3.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 12
2.2
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 290
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1680 to 2970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 24
33 to 38
Strength to Weight: Bending, points 21
27 to 30
Thermal Diffusivity, mm2/s 2.7
11
Thermal Shock Resistance, points 24
27 to 31

Alloy Composition

Carbon (C), % 0 to 0.015
0.12 to 0.18
Chromium (Cr), % 14 to 18
1.3 to 1.8
Cobalt (Co), % 0 to 2.0
0
Iron (Fe), % 0 to 3.0
95.1 to 97
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 14 to 17
0.8 to 1.0
Nickel (Ni), % 58.1 to 72
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0
Vanadium (V), % 0
0.15 to 0.25