MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. EN AC-45500 Aluminum

N06455 nickel belongs to the nickel alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06455 nickel and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 47
2.8
Fatigue Strength, MPa 290
80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Tensile Strength: Ultimate (UTS), MPa 780
320
Tensile Strength: Yield (Proof), MPa 330
250

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1510
610
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.8
2.6
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 260
430
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 24
34
Strength to Weight: Bending, points 21
40
Thermal Diffusivity, mm2/s 2.7
65
Thermal Shock Resistance, points 24
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 14 to 18
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 0 to 3.0
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 14 to 17
0
Nickel (Ni), % 58.1 to 72
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1