MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. Titanium 4-4-2

N06455 nickel belongs to the nickel alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 47
10
Fatigue Strength, MPa 290
590 to 620
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 82
42
Shear Strength, MPa 550
690 to 750
Tensile Strength: Ultimate (UTS), MPa 780
1150 to 1250
Tensile Strength: Yield (Proof), MPa 330
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 960
310
Melting Completion (Liquidus), °C 1510
1610
Melting Onset (Solidus), °C 1450
1560
Specific Heat Capacity, J/kg-K 430
540
Thermal Conductivity, W/m-K 10
6.7
Thermal Expansion, µm/m-K 11
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 65
39
Density, g/cm3 8.8
4.7
Embodied Carbon, kg CO2/kg material 12
30
Embodied Energy, MJ/kg 160
480
Embodied Water, L/kg 290
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
4700 to 5160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
34
Strength to Weight: Axial, points 24
68 to 74
Strength to Weight: Bending, points 21
52 to 55
Thermal Diffusivity, mm2/s 2.7
2.6
Thermal Shock Resistance, points 24
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.015
0 to 0.080
Chromium (Cr), % 14 to 18
0
Cobalt (Co), % 0 to 2.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 3.0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 14 to 17
3.0 to 5.0
Nickel (Ni), % 58.1 to 72
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.7
85.8 to 92.2
Residuals, % 0
0 to 0.4