MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. C93500 Bronze

N06455 nickel belongs to the nickel alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 47
15
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 82
38
Tensile Strength: Ultimate (UTS), MPa 780
220
Tensile Strength: Yield (Proof), MPa 330
110

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1510
1000
Melting Onset (Solidus), °C 1450
850
Specific Heat Capacity, J/kg-K 430
360
Thermal Conductivity, W/m-K 10
70
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 65
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
28
Resilience: Unit (Modulus of Resilience), kJ/m3 260
59
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 24
6.9
Strength to Weight: Bending, points 21
9.1
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 24
8.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 14 to 18
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
83 to 86
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 14 to 17
0
Nickel (Ni), % 58.1 to 72
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.080
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 1.0