MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. R30001 Cobalt

N06455 nickel belongs to the nickel alloys classification, while R30001 cobalt belongs to the cobalt alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is R30001 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
220
Elongation at Break, % 47
1.0
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 82
86
Tensile Strength: Ultimate (UTS), MPa 780
620

Thermal Properties

Latent Heat of Fusion, J/g 320
310
Melting Completion (Liquidus), °C 1510
1530
Melting Onset (Solidus), °C 1450
1260
Specific Heat Capacity, J/kg-K 430
430
Thermal Conductivity, W/m-K 10
15
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
1.8

Otherwise Unclassified Properties

Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 12
8.9
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 290
460

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
22
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 2.7
3.7
Thermal Shock Resistance, points 24
19

Alloy Composition

Carbon (C), % 0 to 0.015
2.0 to 3.0
Chromium (Cr), % 14 to 18
28 to 32
Cobalt (Co), % 0 to 2.0
43 to 59
Iron (Fe), % 0 to 3.0
0 to 3.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 14 to 17
0 to 1.0
Nickel (Ni), % 58.1 to 72
0 to 3.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
0 to 2.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0
Tungsten (W), % 0
11 to 13