MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. 2017 Aluminum

N06603 nickel belongs to the nickel alloys classification, while 2017 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06603 nickel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 28
12 to 18
Fatigue Strength, MPa 230
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 480
130 to 260
Tensile Strength: Ultimate (UTS), MPa 740
190 to 430
Tensile Strength: Yield (Proof), MPa 340
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1300
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 300
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 300
41 to 470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 25
17 to 40
Strength to Weight: Bending, points 22
24 to 42
Thermal Diffusivity, mm2/s 2.9
56
Thermal Shock Resistance, points 20
7.9 to 18

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
91.6 to 95.5
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0 to 0.5
3.5 to 4.5
Iron (Fe), % 8.0 to 11
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Nickel (Ni), % 57.7 to 65.6
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.5
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.010 to 0.25
0 to 0.15
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15