MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. 6012 Aluminum

N06603 nickel belongs to the nickel alloys classification, while 6012 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06603 nickel and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 28
9.1 to 11
Fatigue Strength, MPa 230
55 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 480
130 to 190
Tensile Strength: Ultimate (UTS), MPa 740
220 to 320
Tensile Strength: Yield (Proof), MPa 340
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1300
570
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 8.4
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 300
94 to 480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 25
22 to 32
Strength to Weight: Bending, points 22
29 to 37
Thermal Diffusivity, mm2/s 2.9
62
Thermal Shock Resistance, points 20
10 to 14

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 8.0 to 11
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Nickel (Ni), % 57.7 to 65.6
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.5
0.6 to 1.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.010 to 0.25
0 to 0.2
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.3
Residuals, % 0
0 to 0.15