MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. 6082 Aluminum

N06603 nickel belongs to the nickel alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06603 nickel and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 28
6.3 to 18
Fatigue Strength, MPa 230
55 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 480
84 to 220
Tensile Strength: Ultimate (UTS), MPa 740
140 to 340
Tensile Strength: Yield (Proof), MPa 340
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1340
650
Melting Onset (Solidus), °C 1300
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 300
52 to 710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
14 to 35
Strength to Weight: Bending, points 22
21 to 40
Thermal Diffusivity, mm2/s 2.9
67
Thermal Shock Resistance, points 20
6.0 to 15

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
95.2 to 98.3
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0 to 0.25
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 8.0 to 11
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Nickel (Ni), % 57.7 to 65.6
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.5
0.7 to 1.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.010 to 0.25
0 to 0.1
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15