MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. A206.0 Aluminum

N06603 nickel belongs to the nickel alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06603 nickel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 28
4.2 to 10
Fatigue Strength, MPa 230
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 480
260
Tensile Strength: Ultimate (UTS), MPa 740
390 to 440
Tensile Strength: Yield (Proof), MPa 340
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1340
670
Melting Onset (Solidus), °C 1300
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 300
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 300
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 25
36 to 41
Strength to Weight: Bending, points 22
39 to 43
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 20
17 to 19

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
93.9 to 95.7
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.5
4.2 to 5.0
Iron (Fe), % 8.0 to 11
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.15
0 to 0.2
Nickel (Ni), % 57.7 to 65.6
0 to 0.050
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.010 to 0.25
0.15 to 0.3
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15