MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. A360.0 Aluminum

N06603 nickel belongs to the nickel alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06603 nickel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 28
1.6 to 5.0
Fatigue Strength, MPa 230
82 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 480
180
Tensile Strength: Ultimate (UTS), MPa 740
180 to 320
Tensile Strength: Yield (Proof), MPa 340
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1340
680
Melting Onset (Solidus), °C 1300
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.8
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 300
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 300
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 25
19 to 34
Strength to Weight: Bending, points 22
27 to 39
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 20
8.5 to 15

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
85.8 to 90.6
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.5
0 to 0.6
Iron (Fe), % 8.0 to 11
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.15
0 to 0.35
Nickel (Ni), % 57.7 to 65.6
0 to 0.5
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.010 to 0.25
0
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.25