MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. EN 1.4024 Stainless Steel

N06603 nickel belongs to the nickel alloys classification, while EN 1.4024 stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06603 nickel and the bottom bar is EN 1.4024 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
15 to 22
Fatigue Strength, MPa 230
220 to 300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 480
370 to 460
Tensile Strength: Ultimate (UTS), MPa 740
590 to 750
Tensile Strength: Yield (Proof), MPa 340
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 1000
760
Melting Completion (Liquidus), °C 1340
1440
Melting Onset (Solidus), °C 1300
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 11
30
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 50
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 8.4
1.9
Embodied Energy, MJ/kg 120
27
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
280 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
21 to 27
Strength to Weight: Bending, points 22
20 to 24
Thermal Diffusivity, mm2/s 2.9
8.1
Thermal Shock Resistance, points 20
21 to 26

Alloy Composition

Aluminum (Al), % 2.4 to 3.0
0
Carbon (C), % 0.2 to 0.4
0.12 to 0.17
Chromium (Cr), % 24 to 26
12 to 14
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 8.0 to 11
83.8 to 87.9
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 57.7 to 65.6
0
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.010 to 0.25
0
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0