MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. 1050 Aluminum

N06650 nickel belongs to the nickel alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06650 nickel and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 50
4.6 to 37
Fatigue Strength, MPa 420
31 to 57
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 640
52 to 81
Tensile Strength: Ultimate (UTS), MPa 900
76 to 140
Tensile Strength: Yield (Proof), MPa 460
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
650
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 270
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 490
4.6 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 29
7.8 to 14
Strength to Weight: Bending, points 24
15 to 22
Thermal Shock Resistance, points 24
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
99.5 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 12 to 16
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 0.5 to 2.5
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050