MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. 6063 Aluminum

N06650 nickel belongs to the nickel alloys classification, while 6063 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06650 nickel and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 50
7.3 to 21
Fatigue Strength, MPa 420
39 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 640
70 to 190
Tensile Strength: Ultimate (UTS), MPa 900
110 to 300
Tensile Strength: Yield (Proof), MPa 460
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1450
620
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 270
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 490
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 29
11 to 31
Strength to Weight: Bending, points 24
18 to 37
Thermal Shock Resistance, points 24
4.8 to 13

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
97.5 to 99.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 12 to 16
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.2 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15