MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. 6065 Aluminum

N06650 nickel belongs to the nickel alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06650 nickel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 50
4.5 to 11
Fatigue Strength, MPa 420
96 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 640
190 to 230
Tensile Strength: Ultimate (UTS), MPa 900
310 to 400
Tensile Strength: Yield (Proof), MPa 460
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 440
890
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 10
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 270
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 490
540 to 1040
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 29
31 to 40
Strength to Weight: Bending, points 24
36 to 43
Thermal Shock Resistance, points 24
14 to 18

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0 to 0.15
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0.15 to 0.4
Iron (Fe), % 12 to 16
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0 to 0.15
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15