MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. 6360 Aluminum

N06650 nickel belongs to the nickel alloys classification, while 6360 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06650 nickel and the bottom bar is 6360 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 50
9.0 to 18
Fatigue Strength, MPa 420
31 to 67
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 640
76 to 130
Tensile Strength: Ultimate (UTS), MPa 900
120 to 220
Tensile Strength: Yield (Proof), MPa 460
57 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
630
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 270
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 490
24 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 29
13 to 23
Strength to Weight: Bending, points 24
20 to 30
Thermal Shock Resistance, points 24
5.5 to 9.9

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
97.8 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0 to 0.050
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.15
Iron (Fe), % 12 to 16
0.1 to 0.3
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.5
0.020 to 0.15
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.35 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15