N06650 Nickel vs. ASTM A285 Carbon Steel
N06650 nickel belongs to the nickel alloys classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is N06650 nickel and the bottom bar is ASTM A285 carbon steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 210 | |
190 |
Elongation at Break, % | 50 | |
30 to 34 |
Fatigue Strength, MPa | 420 | |
150 to 180 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 82 | |
73 |
Shear Strength, MPa | 640 | |
250 to 290 |
Tensile Strength: Ultimate (UTS), MPa | 900 | |
380 to 450 |
Tensile Strength: Yield (Proof), MPa | 460 | |
190 to 230 |
Thermal Properties
Latent Heat of Fusion, J/g | 320 | |
250 |
Maximum Temperature: Mechanical, °C | 980 | |
400 |
Melting Completion (Liquidus), °C | 1500 | |
1470 |
Melting Onset (Solidus), °C | 1450 | |
1420 to 1430 |
Specific Heat Capacity, J/kg-K | 440 | |
470 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 60 | |
1.8 |
Density, g/cm3 | 8.6 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 10 | |
1.4 |
Embodied Energy, MJ/kg | 140 | |
18 |
Embodied Water, L/kg | 270 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 380 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 490 | |
94 to 150 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 29 | |
13 to 16 |
Strength to Weight: Bending, points | 24 | |
15 to 17 |
Thermal Shock Resistance, points | 24 | |
12 to 14 |