MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. C18700 Copper

N06650 nickel belongs to the nickel alloys classification, while C18700 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06650 nickel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 50
9.0 to 9.6
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 640
170 to 190
Tensile Strength: Ultimate (UTS), MPa 900
290 to 330
Tensile Strength: Yield (Proof), MPa 460
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1500
1080
Melting Onset (Solidus), °C 1450
950
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 490
240 to 280
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 29
9.0 to 10
Strength to Weight: Bending, points 24
11 to 12
Thermal Shock Resistance, points 24
10 to 12

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
98 to 99.2
Iron (Fe), % 12 to 16
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.5 to 2.5
0
Residuals, % 0
0 to 0.5