MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. C19010 Copper

N06650 nickel belongs to the nickel alloys classification, while C19010 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06650 nickel and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 50
2.4 to 22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 640
210 to 360
Tensile Strength: Ultimate (UTS), MPa 900
330 to 640
Tensile Strength: Yield (Proof), MPa 460
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1500
1060
Melting Onset (Solidus), °C 1450
1010
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 490
290 to 1680
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 29
10 to 20
Strength to Weight: Bending, points 24
12 to 18
Thermal Shock Resistance, points 24
12 to 23

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
97.3 to 99.04
Iron (Fe), % 12 to 16
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0.8 to 1.8
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.050
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.5 to 2.5
0
Residuals, % 0
0 to 0.5