MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. C19700 Copper

N06650 nickel belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06650 nickel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 50
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 640
240 to 300
Tensile Strength: Ultimate (UTS), MPa 900
400 to 530
Tensile Strength: Yield (Proof), MPa 460
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1500
1090
Melting Onset (Solidus), °C 1450
1040
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 490
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 29
12 to 16
Strength to Weight: Bending, points 24
14 to 16
Thermal Shock Resistance, points 24
14 to 19

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0 to 0.050
Copper (Cu), % 0 to 0.3
97.4 to 99.59
Iron (Fe), % 12 to 16
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0 to 0.050
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2