MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. C42600 Brass

N06650 nickel belongs to the nickel alloys classification, while C42600 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06650 nickel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 50
1.1 to 40
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
42
Shear Strength, MPa 640
280 to 470
Tensile Strength: Ultimate (UTS), MPa 900
410 to 830
Tensile Strength: Yield (Proof), MPa 460
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1500
1030
Melting Onset (Solidus), °C 1450
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 270
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 490
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 29
13 to 27
Strength to Weight: Bending, points 24
14 to 23
Thermal Shock Resistance, points 24
15 to 29

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
87 to 90
Iron (Fe), % 12 to 16
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
0.050 to 0.2
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0.020 to 0.050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
2.5 to 4.0
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2