MakeItFrom.com
Menu (ESC)

N06650 Nickel vs. C96600 Copper

N06650 nickel belongs to the nickel alloys classification, while C96600 copper belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06650 nickel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 50
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
52
Tensile Strength: Ultimate (UTS), MPa 900
760
Tensile Strength: Yield (Proof), MPa 460
480

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 980
280
Melting Completion (Liquidus), °C 1500
1180
Melting Onset (Solidus), °C 1450
1100
Specific Heat Capacity, J/kg-K 440
400
Thermal Expansion, µm/m-K 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
65
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 10
7.0
Embodied Energy, MJ/kg 140
100
Embodied Water, L/kg 270
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 380
47
Resilience: Unit (Modulus of Resilience), kJ/m3 490
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 24
21
Thermal Shock Resistance, points 24
25

Alloy Composition

Aluminum (Al), % 0.050 to 0.5
0
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
63.5 to 69.8
Iron (Fe), % 12 to 16
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 9.5 to 12.5
0
Nickel (Ni), % 44.4 to 58.9
29 to 33
Niobium (Nb), % 0.050 to 0.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.5 to 2.5
0
Residuals, % 0
0 to 0.5