MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. 2618A Aluminum

N06920 nickel belongs to the nickel alloys classification, while 2618A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06920 nickel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 39
4.5
Fatigue Strength, MPa 220
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 500
260
Tensile Strength: Ultimate (UTS), MPa 730
440
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
230
Melting Completion (Liquidus), °C 1500
670
Melting Onset (Solidus), °C 1440
560
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 9.4
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
19
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 24
41
Strength to Weight: Bending, points 21
44
Thermal Diffusivity, mm2/s 2.8
59
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 17 to 20
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0.8 to 1.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15