MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. 5026 Aluminum

N06920 nickel belongs to the nickel alloys classification, while 5026 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06920 nickel and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 39
5.1 to 11
Fatigue Strength, MPa 220
94 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 500
150 to 180
Tensile Strength: Ultimate (UTS), MPa 730
260 to 320
Tensile Strength: Yield (Proof), MPa 270
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
210
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1440
510
Specific Heat Capacity, J/kg-K 440
890
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.9
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 180
100 to 440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 24
26 to 32
Strength to Weight: Bending, points 21
33 to 37
Thermal Diffusivity, mm2/s 2.8
52
Thermal Shock Resistance, points 19
11 to 14

Alloy Composition

Aluminum (Al), % 0
88.2 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0 to 0.3
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
0.1 to 0.8
Iron (Fe), % 17 to 20
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0 to 1.0
0.6 to 1.8
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.55 to 1.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15