MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. 6066 Aluminum

N06920 nickel belongs to the nickel alloys classification, while 6066 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06920 nickel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 39
7.8 to 17
Fatigue Strength, MPa 220
94 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 500
95 to 240
Tensile Strength: Ultimate (UTS), MPa 730
160 to 400
Tensile Strength: Yield (Proof), MPa 270
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1440
560
Specific Heat Capacity, J/kg-K 440
890
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 180
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 24
16 to 39
Strength to Weight: Bending, points 21
23 to 43
Thermal Diffusivity, mm2/s 2.8
61
Thermal Shock Resistance, points 19
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0 to 0.4
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 17 to 20
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 1.0
0.6 to 1.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.9 to 1.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15