MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C17200 Copper

N06920 nickel belongs to the nickel alloys classification, while C17200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C17200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 39
1.1 to 37
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
45
Shear Strength, MPa 500
330 to 780
Tensile Strength: Ultimate (UTS), MPa 730
480 to 1380
Tensile Strength: Yield (Proof), MPa 270
160 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 990
280
Melting Completion (Liquidus), °C 1500
980
Melting Onset (Solidus), °C 1440
870
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
23

Otherwise Unclassified Properties

Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 9.4
9.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
4.2 to 500
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 5720
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
15 to 44
Strength to Weight: Bending, points 21
16 to 31
Thermal Diffusivity, mm2/s 2.8
31
Thermal Shock Resistance, points 19
16 to 46

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
96.1 to 98
Iron (Fe), % 17 to 20
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0.2 to 0.6
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 1.0 to 3.0
0
Residuals, % 0
0 to 0.5