MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C31600 Bronze

N06920 nickel belongs to the nickel alloys classification, while C31600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
6.7 to 28
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
42
Shear Strength, MPa 500
170 to 270
Tensile Strength: Ultimate (UTS), MPa 730
270 to 460
Tensile Strength: Yield (Proof), MPa 270
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1500
1040
Melting Onset (Solidus), °C 1440
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
33

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 690
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 24
8.5 to 15
Strength to Weight: Bending, points 21
11 to 15
Thermal Diffusivity, mm2/s 2.8
42
Thermal Shock Resistance, points 19
9.4 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 17 to 20
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0.7 to 1.2
Phosphorus (P), % 0 to 0.040
0.040 to 0.1
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
5.2 to 10.5
Residuals, % 0
0 to 0.4