MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C62400 Bronze

N06920 nickel belongs to the nickel alloys classification, while C62400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
11 to 14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
42
Shear Strength, MPa 500
420 to 440
Tensile Strength: Ultimate (UTS), MPa 730
690 to 730
Tensile Strength: Yield (Proof), MPa 270
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1500
1040
Melting Onset (Solidus), °C 1440
1030
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 11
59
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
27
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 9.4
3.2
Embodied Energy, MJ/kg 130
53
Embodied Water, L/kg 270
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 180
320 to 550
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 24
23 to 25
Strength to Weight: Bending, points 21
21 to 22
Thermal Diffusivity, mm2/s 2.8
16
Thermal Shock Resistance, points 19
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
82.8 to 88
Iron (Fe), % 17 to 20
2.0 to 4.5
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 1.0 to 3.0
0
Residuals, % 0
0 to 0.5