MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C85200 Brass

N06920 nickel belongs to the nickel alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
28
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 82
40
Tensile Strength: Ultimate (UTS), MPa 730
270
Tensile Strength: Yield (Proof), MPa 270
95

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 990
140
Melting Completion (Liquidus), °C 1500
940
Melting Onset (Solidus), °C 1440
930
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
84
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
26
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 9.4
2.8
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
59
Resilience: Unit (Modulus of Resilience), kJ/m3 180
42
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
8.9
Strength to Weight: Bending, points 21
11
Thermal Diffusivity, mm2/s 2.8
27
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 17 to 20
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9