MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C85700 Brass

N06920 nickel belongs to the nickel alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 39
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 82
40
Tensile Strength: Ultimate (UTS), MPa 730
310
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1500
940
Melting Onset (Solidus), °C 1440
910
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
84
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 55
24
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 9.4
2.8
Embodied Energy, MJ/kg 130
47
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
41
Resilience: Unit (Modulus of Resilience), kJ/m3 180
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 24
11
Strength to Weight: Bending, points 21
13
Thermal Diffusivity, mm2/s 2.8
27
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 17 to 20
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3