MakeItFrom.com
Menu (ESC)

N06920 Nickel vs. C94300 Bronze

N06920 nickel belongs to the nickel alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06920 nickel and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
87
Elongation at Break, % 39
9.7
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 82
32
Tensile Strength: Ultimate (UTS), MPa 730
180
Tensile Strength: Yield (Proof), MPa 270
120

Thermal Properties

Latent Heat of Fusion, J/g 320
150
Maximum Temperature: Mechanical, °C 990
110
Melting Completion (Liquidus), °C 1500
820
Melting Onset (Solidus), °C 1440
760
Specific Heat Capacity, J/kg-K 440
320
Thermal Conductivity, W/m-K 11
63
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.6
9.3
Embodied Carbon, kg CO2/kg material 9.4
2.9
Embodied Energy, MJ/kg 130
47
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
15
Resilience: Unit (Modulus of Resilience), kJ/m3 180
77
Stiffness to Weight: Axial, points 14
5.2
Stiffness to Weight: Bending, points 23
16
Strength to Weight: Axial, points 24
5.2
Strength to Weight: Bending, points 21
7.4
Thermal Diffusivity, mm2/s 2.8
21
Thermal Shock Resistance, points 19
7.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
67 to 72
Iron (Fe), % 17 to 20
0 to 0.15
Lead (Pb), % 0
23 to 27
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 36.9 to 53.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0