MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 332.0 Aluminum

N06975 nickel belongs to the nickel alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 45
1.0
Fatigue Strength, MPa 210
90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 470
190
Tensile Strength: Ultimate (UTS), MPa 660
250
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
580
Melting Onset (Solidus), °C 1380
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 8.9
7.8
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 270
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 150
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
31
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0.7 to 1.2
2.0 to 4.0
Iron (Fe), % 10.2 to 23.6
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
8.5 to 10.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5