MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 360.0 Aluminum

N06975 nickel belongs to the nickel alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
2.5
Fatigue Strength, MPa 210
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 470
190
Tensile Strength: Ultimate (UTS), MPa 660
300
Tensile Strength: Yield (Proof), MPa 250
170

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 8.9
7.8
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 150
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 20
38
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0.7 to 1.2
0 to 0.6
Iron (Fe), % 10.2 to 23.6
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.7 to 1.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25