MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 443.0 Aluminum

N06975 nickel belongs to the nickel alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 45
5.6
Fatigue Strength, MPa 210
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 470
96
Tensile Strength: Ultimate (UTS), MPa 660
150
Tensile Strength: Yield (Proof), MPa 250
65

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 150
30
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 20
23
Thermal Shock Resistance, points 18
6.9

Alloy Composition

Aluminum (Al), % 0
90.7 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.25
Copper (Cu), % 0.7 to 1.2
0 to 0.6
Iron (Fe), % 10.2 to 23.6
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35