MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 6005A Aluminum

N06975 nickel belongs to the nickel alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 45
8.6 to 17
Fatigue Strength, MPa 210
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 470
120 to 180
Tensile Strength: Ultimate (UTS), MPa 660
190 to 300
Tensile Strength: Yield (Proof), MPa 250
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 150
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
20 to 30
Strength to Weight: Bending, points 20
27 to 36
Thermal Shock Resistance, points 18
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.3
Copper (Cu), % 0.7 to 1.2
0 to 0.3
Iron (Fe), % 10.2 to 23.6
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15