MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 6261 Aluminum

N06975 nickel belongs to the nickel alloys classification, while 6261 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 45
9.0 to 16
Fatigue Strength, MPa 210
60 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 470
90 to 180
Tensile Strength: Ultimate (UTS), MPa 660
150 to 300
Tensile Strength: Yield (Proof), MPa 250
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 150
77 to 500
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
15 to 31
Strength to Weight: Bending, points 20
23 to 37
Thermal Shock Resistance, points 18
6.5 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 98.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.1
Copper (Cu), % 0.7 to 1.2
0.15 to 0.4
Iron (Fe), % 10.2 to 23.6
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.35
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.4 to 0.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15